Global Attractor and Stabilization for a Coupled Pde-ode System
نویسنده
چکیده
We study the asymptotic behavior of solutions of one coupled PDE-ODE system arising in mathematical biology as a model for the development of a forest ecosystem. In the case where the ODE-component of the system is monotone, we establish the existence of a smooth global attractor of finite Hausdorff and fractal dimension. The case of the non-monotone ODE-component is much more complicated. In particular, the set of equilibria becomes non-compact here and contains a huge number of essentially discontinuous solutions. Nevertheless, we prove the stabilization of any trajectory to a single equilibrium if the coupling constant is small enough.
منابع مشابه
Stabilization for a coupled PDE–ODE control system
A control system of an ODE and a diffusion PDE is discussed in this paper. The novelty lies in that the system is coupled. The method of PDE backstepping as well as some special skills is resorted in stabilizing the coupled PDE–ODE control system, which is transformed into an exponentially stable PDE–ODE cascade with an invertible integral transformation. And a state feedback boundary controlle...
متن کاملRiccati-Based Feedback Control of the Monodomain Equations With the Fitzhugh-Nagumo Model
Feedback control for the monodomain equations is studied. The dynamics of interest are governed by a coupled PDE-ODE reaction diffusion system with non-monotone nonlinearity of FitzHugh-Nagumo type. A localized distributed control is used to locally stabilize the nonlinear system. This is achieved by a Riccati-based feedback law, determined by the linearized system. It is shown that the Riccati...
متن کاملFeedback Stabilization to Nonstationary Solutions of a Class of Reaction Diffusion Equations of FitzHugh-Nagumo Type
Stabilization to a trajectory for the monodomain equations, a coupled nonlinear PDE-ODE system, is investigated. The results rely on stabilization of linear first-order in time nonautonomous evolution equations combined with stabilizability results for the linearized monodomain equations and a fixed point argument to treat local stabilizability of the nonlinear system. Numerical experiments for...
متن کاملBoundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer
This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...
متن کاملTHE USE OF A RUNGE-KUTTA SCHEME FOR AN ODE-PDE MODEL OF SUPPLY CHAINS
Integrating various suppliers to satisfy market demand is of great importance for e ective supply chain management. In this paper, we consider the ODE-PDE model of supply chain and apply a classical explicit fourth-order Runge-Kutta scheme for the related ODE model of suppliers. Also, the convergence of the proposed method is proved. Finally a numerical example is studied to demonstrate the acc...
متن کامل